A FORMALISM OF NONLINEAR
NONEQUILIBRIUM THERMODYNAMICS
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The variational formalism is applied to the nonlinear law of kinetics (scalar processes).
Using the Lagrangian of a system as some function of state (entropy of large departures from
equilibrium) makes it possible to construct a formalism of nonlinear thermodynamics which
is analogous to the linear case.

We consider a class of scalar nonlinear nonequilibrium processes subject to the system of dynamic
equations

X=X (K o, k), i=1,2, ..., 1)

If (1) is expanded into a series and only the first-order terms in the state variables x; are retained,
then the linear law of kinetics, in the thermodynamic interpretation, corresponds to the Osnager system
of equations [1].

One of the fundamental problems in nonlinear nonequilibrium thermodynamics is to find (1) in ex-
plicit form for the entire kinetic range of a process (0 =t = =),

A similar system had been postulated in [2] in the form of the time theorem. An analogous form of
equations was then derived in [3], but on a physical basis using a stochastic model of a nonequilibrium pro-
cess rather than by way of a priori construction.

A not less important theoretical problem is the construction of a thermodynamic formalism for non-
linear nonequilibrium processes: the introduction of nonlinear thermodynamic forces, nonlinear increases
in entropy, nonlinear force equations, etc.

We will show here that, by extending the variational principle in nonlinear thermodynamics [4] to non-
linearprocesses with due consideration ofthe results in [3], it becomes possible to represent the formalism
of nonlinear processes of a given type in just as simple terms as in the linear case.

We will recall that for n = 1, according to [3], (1) can be written in the form

e K| 9811

x~K{exp[a ax] IJ’ 2)
as,

K =cexp [—a—&—]. 3)

It has been assumed here that the system tends toward equilibrium in two opposing steps, inasmuch
as S = 8 + S5, represents the total entropy made up of entropy S, in the forward process and entropy S, of
the reverse process. The quantity S obeys the Gibbs rule.

The quantities ¢ and a are, to the first approximation considered independent of X, i. e., are re-
garded as phenomenological constants.

Considering that the linear thermodynamic forces X are defined by the relation
X=Zm ==, @
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we can rewrite expression (2) as
x = K {exp [aX]—1]. ®)

I is easy to ascertain that expression (5) obeys the correspondence principle: expanding (5) into a
MacLaurin series and retaining only the linear terms, we obtain the same results as those based on linear
thermodynamics. It is possible then to determine ¢ and @ in terms of the phenomenological coefficient L,
namely:

ca=L. 6)

An extension of the same stochastic model to the case n > 1 leads to a system of kinetic equations:

’.fi = ZKz’j {eXP fa;X;} — 1}»
)

5, [0S @
K;, =K} exp [— g [-——2 —( ‘2) {
j 7 t J an axj szovr
Ki = Ky (x =0), @)
considering now the linear approximations, we find
K?l a; = Li]" Lij = Lji' (9)

For further calculations, the system of linear kinetic equations (7) will be conveniently represented
in the form

¥ = MLiB;(exp aX,;— 1),

i (10)
i=1,2, ..., n
with B; expressed as
{
Bi(xy, ..., x,)=a;exp [ aj[ 98, ( _‘?_§L> 1 11
l axj axj xj———()}

Let us now consider (10) from the variational point of view [4].

We recall that the variational principle [4] is stated as follows:

S - FQibx; =0 (12)

with the Lagrange function
E=—AS(xy, x4 ..., Xy (13)

and the dissipation forces

od
= d 14
%= 5% (14)
1 T
o=— 3 Lig X%,

2 “-kJ & XXy {15)

Equation (12) leads to the system of kinetic equations of linear thermodynamics:
X = 2 LipX,. (16)
k

In accordance with (1), we assume that the dissipation function is structurally a homogeneous second-~
order one. In other words, @* is of the form (15) also far from equilibrium. (The asterisk * will from
now on refer to nonlinear processes). For instance, as has been shown earlier in [5], chemical reactions
of an arbitrary order can belong to the same class of nonlinear processes. Thus, we have for &*:

1 — . .
®* = r3 E Il (L7)* X1 % 17
i,k
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Since
.k
X=X, kR=1,2,...,n,
O* > D,

as equilibrium is approached and the matrix of phenomenological coefficients L* has been stipulated con-~
stant, hence it necessarily follows from (18) that

(18)

L*=1L (19)
(the asterisk * with xf{‘ will be from now on omitted).

If the nonlinear dissipation forces are defined according to the same law (14), i. e., if

Q; = i=1,2 ..., n, (20)

ax,
then the kinetic equations (10) become a consequence of the variational principle (12) with the Lagrange
function &£ *
£ = \‘ g‘ EBj(expanj—l)dxj. (21)
0 0
Carrying the analogy with linear processes further, and taking into account (13), we may introduce
the function

X1

and define it as the entropy of large departures from equilibrium, of large fluctuations. More precisely,
AS* is the deviation of entropy from equilibrium at large values of xj. Such an interpretation of function
(22) requires a special statistical basis. Nevertheless, as will be shown here, the introduction of AS*
according to formula (22) appears extremely useful for constructing a formalism of nonlinear thermo-
dynamics. :

We will first examine the general properties of AS*.

1. Moving into the linear range, we have
AS*(xy, .., X)) AS(xy, ..., 1)
lim AS*(x, ..., x,)=0. 23)

Xiyer Xy >0

2. Unlike AS, function AS* does not obey the Gibbs rule. This feature of AS* applies only in the
region far from equilibrium.

3. The explicit form of AS* or the differential equation for dS* can be found from formula (22).

For illustration, we will consider an adiabatically insulated system with r reactions of an arbitrary
order. The differential version of (22) is

-’ p
TdS* = MR X {EXP ['IR“ 2 V! Al‘k]
; %

i
1NN it
—exp[——— Vi Ap,m} dx;. (24)
R m;,u‘,l J

Here Ay is the deviation of the chemical potential of the k-th component from equilibrium, expressed in
terms of the degree of completion of the given reaction, Ivkjl is the absolute value of the stoichiometric
coefficient of the k-th component on the left-hand side of the j-th reaction, and Iyl is the absolute value
of the stoichiometric coefficient of the m-th component on the right-hand side of the j-th reaction.

k can be easily ascertained that at the limit, as equilibrium is approached, (24) becomes the Gibbs
equation (the system is adiabatically insulated):

TdS =M 2 Adx;. (25)
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The chemical agent A; of the j-th reaction is
.
jE“"Evhjf.Lh. (26)
&

Formalism of Nonlinear Thermodynamics. We introduce nonlinear thermodynamic forces X;" , just
as in (4), :

i=1,2, ..., n @7

Applying the variational principle (12) with (27), (21), (22), and (20) taken into account, we obtain
the system of kinetic equations in the form

’{‘i = },,: LikXZv (28)

In other words, the system of dynamic equations remains linear when represented in terms of forces.
We recall that the matrix of phenomenological coefficients Ljj is known from linear thermodynamics and
satisfies the Osnager reciprocity relations.

When applied to our case of chemical reactions, system (28) can be expressed as

Xy =LA, j=1,2,...,7, 29)
where the nonlinear chemical agent Ajf'< of the j-th reaction appears to play the role of nonlinear forces:
. I % oy
X;=A; =Rlex ——\ Vil Auy, | —exp | — Vol A 1, 30)
i j { p[R#l kﬂ p’l] p[ng_ll ]l ”m]J (

with which expression (29) becomes equivalent to the law of mass action.

As equilibrium is approached, Aj" - Aj. Let us now determine the nonlinear rate of entropy change

a*:
o — dAS* -
dt
Considering that AS* = AS*({Xy,..., Xp), we find that
oF = 2 ,\"iX; s (32)

i. e., as in the linear case, the rate of entropy change is determined by the sum of products of conjugate
thermal fluxes and thermodynamic forces.

We will now show that the condition
c* >0 33)
is a criterion for the evolution of nonlinear processes in adiabatically insulated systems. Since
o* = 200%, (34)

hence condition (33) is satisfied by ®* in a positive-definite quadratic form, which is possible only if all
the eigenvalues of matrix L are positive. This latter requirement is met, as a consequence of the Second
Law of Thermodynamics

2D =g > 0. (35)

Under steady-state conditions, when AS* = const, the variational principle (12) in the case of non~
linear processes becomes

Qb = 0. (36)

By virtue of the arbitrariness of 6x;. we obtain the following system of equations

Q) =0, i=1,2, ..., 1 (37)
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equivalent to the condition
§@* = 0. (38)

Thus, under steady-state conditions, the rate of entropy change ¢* is minimum,
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